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The axial skew of flow in curved pipes 
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As a uniformly coiled pipe is wound progressively tighter, centrifugal acceleration 
would be expected to drive the axial flow increasingly towards the outer wall of the 
pipe bend. Instead, the effect of bend curvature R is found experimentally to  become 
fully expressed at small curvature ratios (a /R  < 0.02), where a is the pipe radius. No 
further increase in the axial skew is observed in more tightly coiled pipe sections 
(0.02 < a / R  < 0.20). In this 'asymptotic' regime where pipe curvature is 
unimportant, the developing axial skew intensifies as x [(Re - 100) L/a]i, where 
Re = 2Vu/v and L is the entrance length. These results suggest that the action of 
centrifugal force remains balanced by swirl as flow develops in tightly coiled pipes, 
while in loosely coiled pipes the development of centrifugal effects lags the growth 
of swirl. 

1. Introduction 
In a recent review, Berger, Talbot & Yao (1983) have stressed the increased 

analytic complexity introduced by the presence of stream curvature in conduit flows. 
Even for steady flow the full Navier-Stokes equations contain several terms involving 
two independent dimensionless parameters - the curvature ratio a / R  and the Dean 
number K = (a/R); (2Wu/v). As these equations can be simplified considerably by 
neglecting terms of order (a/R)' or higher, most computational studies have 
considered only loosely coiled pipes (a /R  Q 1) for which the simplified form is valid. 
For such pipes the reduced equations imply that all developing flow patterns should 
either scale only with K ,  or else be independent of both parameters. While the resulting 
computations are usually assumed to be valid for a / R  < 0.2, the existing experimental 
literature is too qualitative to test this assumption fully. Therefore, a quantitative 
determination of how developing flow patterns depend on a vanishing curvature ratio 
would be important in assessing the accuracy of tractable approximation methods. 
In  this report we show that a / R  remains an independent parameter in low laminar 
flows irrespective of any Dean-number effect, so that higher-order terms in a / R  must 
be important for curvature ratios as small as 0.007. 

For experimental convenience we chose to examine the developing axial profile 
produced by steady, uniform, laminar entry flow through uniformly coiled pipes. This 
flow pattern can be seen in figure 1 to exhibit two characteristic features as it  evolves 
downstream. Near the inlet, stream curvature causes the uniform entry profile to form 
a potential line vortex, with flow skewed towards the inner wall of the pipe bend 
(Singh 1974). Further downstream, the cumulative action of centrifugal acceleration 
causes axial flow to shift progressively towards the outer wall of the bend. While 

7 Present address : Mechanical Engineering Department, University of Nevada-Reno, Reno, 
Nevada 89557. 
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FIQURE 1. The outward shift of developing flow in the symmetry plane of a curved pipe; a / R  = {, 
= 22 cm/s, Re = 540. Pipe is bent towards left. Axial skew initially favours the inner wall as 

the inlet flow profile deforms into a line vortex. With increasing bend angle, the cumulative action 
of centrifugal acceleration causes skew to shift outwards. Data from Olson (1971), by hot-wire 
anemometry . 

details of these secondary flow patterns may vary from case to case, a consistent 
picture of how they evolve can be obtained by using integral measures of axial skew. 
The results shown in figure 2, for example, were constructed from published accounts 
of axial-velocity profiles in curved pipes simply by evaluating relative flow through 
each half of the pipe cross-section. This figure makes evident both stages of developing 
axial skew, and for several values of a / R  and K skew is seen to develop over a 
lengthscale Lla,  where L is the entrance length and a the pipe radius. 

Apparently, the pipe radius of curvature R does not influence the outward shift 
in axial flow over the range of curvature ratios 0.05 < a / R  < 0.215 reported in earlier 
studies by Agrawal, Talbot & Gong (1978) and by Olson & Snyder (1985). As this 
outcome seemed unlikely on physical grounds, the present investigation used a much 
wider range of a / R ,  including cases of vanishing curvature where flow can be expected 
to be nearly axisymmetric. Van Dyke (1978) has conjectured that in such loosely 
coiled pipes the character of secondary flow may not depend uniquely on the Dean 
number K. We shall show his hypothesis t o  be essentially correct: at least for 
developing axial skew, K is not the sole governing parameter. Either a / R  or the 
Reynolds number 2 r a / v  must also be considered independently. 



Axial skew of flow in curved pipes 283 

I -Inner 
- 5 %  p w a l l  

e t 
10 20 30 

Entrance length, L / u  
x 
I 
3 0 c 

2 
0 

... 

Outer 1 wall 
n 

A 
FIGURE 2. The development of axial skew in tightly coiled pipes, as scaled to entrance length L/a .  
Skew is computed by integrating pointwise measurements of axial velocity. An effect of Re is 
evident for L / a  2 10, but no effect of a / R  is apparent. From Agrawal, Talbot & Gong (1978), using 
glycerin-water solutions: A, a / R  = +, Re = 485; A, &, 2527. From Olson & Snyder (1985), using 
air: 0 ,  0, a / R  = A, Re = 300 and 1080; ., 0,  i, 290 and 1100. Present report: x ,  a / R  = & 
and A, Re = 539. U = upper half, L = lower half of cross-section. 

The limit point of vanishing curvature is also useful in assessing models of entry 
length L, for fully developed curved-pipe flow. Yao & Berger (1975) used a modal 
analysis to obtain the expression LJL,  N 8 e l / d ,  where L, = 0.125~ Re is the entry 
length for a straight pipe of equivalent diameter and Reynolds number, while el is 
a parameter that is thought to depend weakly on a / R  (2 < el < 4). The form of this 
expression seems doubtful however, since in loosely coiled pipes L,/L, would become 
unbounded at any Re as a / R  tended to zero. A similar difficulty would arise at low 
Re, for any curvature ratio. As is discussed later, our experimental results suggest 
a possible resolution of this point. 

The intent of this report is not to define entry length, but rather to explore a 
downstream regime of developing flow, bracketed by two lengths of pipe 
(28.2 < L/a  < 56.5). For these entrance lengths, flow in straight pipes becomes fully 
developed for Re 6 420. Since these Reynolds numbers are comparable to our 
experimental cases, the flow in these loosely coiled pipes may also be nearly fully 
developed. Both entrance lengths extend far beyond the cross-over point L/a  N 2.4, 
shown in figure 2, where skew first shifts outwards. Therefore the regime of interest 
is an asymptotic downstream region where effects of pipe curvature and friction can 
be expected to govern the pattern of axial flow. 

2. Experimental methods 

‘inner’ and ‘outer’ halves, the axial skew can be defined simply as 
By imagining the pipe cross-section to be bisected along its vertical centreline into 

d = (yo flow in outer half) - (yo flow in inner half). (1) 

The quantities on the right-hand side of (1) are measured using the experimental 
design in figure 3. A length of flexible Tygon tubing 1.91 cm (g in.) i.d. is bent to a 
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FIGURE 3. Experimental design, showing the upstream flow plenum and entrance bell, the curved 
pipe, and a downstream bifurcation. The bifurcation was used to split axial flow into a n  ‘inner’ 
and ‘outer’ flow. Flow in each branch was measured by inserting a hot-wire anemometer into the 
airstream at A or B. Total flow Q was measured upstream of the plenum. Branch flow and total 
flow were recorded simultaneously on a digital oscilloscope to  obtain flow-flow curves as in figure 
4. Here, the anemometer at B is being calibrated to  total flow. 

desired curvature ratio a /R ,  mounted on a horizontal plane,? and joined to  an 
entrance bell that provides a nearly uniform inlet-velocity profile. Flow a t  the pipe 
exit is split into ‘inner’ and ‘outer’ streams by a symmetric 60” bifurcation mounted 
flush to  the tubing. Flow in each stream is measured by inserting a hot-wire 
anemometer into the centre of the branch cross-section, while total flow is measured 
by a calibrated laminar-flow meter (linear pneumotachograph) located upstream of 
the entrance bell. After relating each branch flow to the total inlet flow, (1)  is used 
to compute the axial skew A .  

Examples of flow-flow tracings generated by simultaneously recording the 
anemometer and pneumotachograph signals are shown in figure 4(a, b ) .  It is evident 
that the anemometer response is nonlinear, but this is of no consequence so long as 
the pneumotachograph itself is linear with flow, as i t  is in the low-laminar regime. 
The anemometer is calibrated in situ to the pneumotachograph, by plugging the 
unmonitored branch. Thus the total flow registered by the pneumotachograph must 
also pass through the branch containing the anemometer. The resulting calibration 
curves in figure 4 (a ,  b ) ,  although nonlinear, yield a one-to-one correspondence 
between the anemometer and pneumotachograph signals. The unmonitored branch 
is then unplugged to permit flow splitting to occur in the exit bifurcation. The 
resulting flow-flow curves define relative flow through each branch, and are quantified 
from the corresponding calibration curve by converting the anemometer signal to 
branch flow. 

The use of a hot-wire anemometer as a volume-flow meter may be novel to some 
experimenters. The technique is advantageous in that i t  minimizesexit-flow resistance, 
which might otherwise distort the axial distribution of flow in the curved pipe 

t The tubing remained nearly circular in cross-section even when bent, as i t  was constrained 
externally by circular hoops placed at intervals along its length and was relatively thick walled. 
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FIGURE 4. Oscilloscope tracings of flow-flow curves for a curved pipe; L/a  = 56.5, a / R  = &. Each 
calibration curve was generated by directing the entire airstream past the anemometer m flow was 
slowly increased. After unplugging the unmonitored branch, the procedure was repeated to 
determine the corresponding flow-flow curve: The dashed lines illustrate how branch flows were 
obtained. At 75 units of total flow (Re = 466),-flow-flow curve (a)  yields 31 units of 'inner' flow 
and curve (6) yields 44 units of 'outer' flow. Hence A = [(44-331)/75] x 100% = 17.3 %. 

segment. It also permits axial skew to be scanned over a wide range of inlet velocities, 
simply by using a variable-speed pump to increase flow in a 'quasi-steady' manner. 
In practice the results are highly reproducible and insensitive to small variations in 
anemometer position, provided axial-velocity profiles in the downstream segment of 
each branch remain independent of flow rate. Olson (1971) has shown that flow 
entering a symmetric bifurcation becomes highly skewed as it passes the flow divider, 
returning to a nearly symmetric distribution approximately 10 diameters downstream. 
His tracings, as reproduced in figure 5 ( a ) ,  show that at  shorter entrance lengths the 
axial profile changes significantly with Reynolds number. As such shape changes 
would undermine the correspondence between the calibration curve and the flow-flow 
curve, the exit branches were extended to provide 9 diameters of flow development 
between the flow divider and the anemometer. 

An effect of flow separation set an upper limit to the useful Reynolds-number range 
of the technique. The sharply curved junction between the curved pipe and 
bifurcation produces a strongly separated flow pattern at  higher Re, causing a flow 
split that does not reflect the upstream axial profile in the curved pipe. This effect 
could be detected by an abrupt increase in anemometer noise at Re N 650 as shown 
in figure 5 ( b ) ,  and by a failure to conserve total flow when both branch flows were 
summed. Therefore our reliable measurements were confined to Reynolds numbers 
of 550 or less. 

In addition, i t  was necessary to quantify the upstream influence of the flow divider 
on the axial-flow profile in the curved pipe. Humphrey, Taylor & Whitelaw (1977) 
have described an analogous effect occurring in the entry region of pipe bends, which 
can be detected 5 diameters upstream of the onset of curvature. Its quantitative 
significance to our experimental results was evaluated by comparing the effect of 
different exit conditions on the centreline-velocity profile in the curved pipe. The 
hot-wire tracings in figure 6 show no detectable upstream effect at  the point where 

10-2 
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FIGURE 5. For caption see facing page. 



Axial skew of $ow in curved pipes 287 

R 
0 
X 

Q 

I) 

Oh 1 I I I 
- 1  -0.5 0 + 0.5 + 1  

Non-dimensional radius 

FIGURE 6. Velocity profiles in the symmetry plane of a 90" bend, for two different exit conditions: 
x , straight pipe 6 cm long; 0, bifurcation, with the flow divider 1.5 diameters downstream of the 
hot-wire anemometer. Each point is the average of two measurements, repeatable to f0.5 cmls. 

= 42.2 cmls, Lla  = 56.5, Re = 504. 

the bifurcation begins to diverge, just 1.5 diameters upstream of the flow divider. 
From these measurements we conclude that the upstream effect of the flow divider 
is likely to be too localized to affect the measured distribution of flow, at least at 
low Re. 

The experimental technique was further verified by requiring that the sum of 
branch flows, measured independently, equal total inlet flow to within 2 yo ; that flow 
through a straight pipe be measured as axisymmetric ; and that skew in tightly coiled 
pipes reproduce previously reported results (figure 2). 

3. Results 
Measured values of the axial skew A ,  as defined by (l) ,  are shown in figure 7 (a, b) 

for entrance lengths L/a  of 28.2 and 56.5, respectively. The solid lines in this figure 
are computed from the empirically derived expression 

(L/a  2 10; 150 < Re < 2600), (2) 

FIGURE 5. Limitations of the experimental procedure: (a) Velocity profiles, showing the change in 
shape on passage through a symmetric bifurcation (from Olson 1971). The flow divider is a t  
LID = 0; positive numbers denote downstream distances in pipe diameters. At LID = 5 the 
centreline velocity changes disproportionately more than 10 yo as Re increases from 31 1 to 530, while 
a t  LID = 10 the central velocity remains linear with Re to within 3%. Exit arms in the present 
study were extended 9 diameters to minimize shape changes. (b) Time tracing of anemometer 
signals, showing the onset of strongly separated flow a t  the junction between curved pipe and 
bifurcation for inlet = 58 cm/s (Re zz 700). Flow in the inner arm remains steady even a t  
higher Re. Flow separation changes the shape of the flow-flow curve, rendering it inconsistent 
with the calibration curve. 
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FIGURE 7. Measured skew d as a function of curvature ratio a /R .  The solid curves represent (2) 
of text, with Re as parameter. (a) At an entrance length Lla  = 28.2 the effect of curvature is 
apparent only in loosely coiled pipes (a /R  < 0.02). (b) At L/a  = 56.5 the regime for which curvature 
is important is even more restricted (a /R  < 0.007). 

where r3 = L/  R is expressed in radians. This expression also represents the downstream 
portion of the data given in figure 2 .  

Figure 7 (a ,  b )  demonstrates how the developing axial profile can be characterized 
by two very different flow regimes : one where skew is a strong function of curvature 
and a second where skew is independent of R .  In loosely coiled pipes where the total 
bend deflection 0 is small, the outward shift in flow is a strong function of a / R ,  
becoming nearly maximal for t? - 30". More tightly coiled pipes constitute an 
asymptotic regime, in which the degree of curvature has no bearing on the magnitude 
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FIGURE 8. Data as given in figure 7, but rescaled to K = (a/R)!Re to emphasize the onset of skew 
at finite Dean numbers (11 < K, < 16). (a )  L / a  = 28.2, K, = 16; ( b )  56.5, 11. The solid curves 
forming the envelope of points are given by (3) of text; dashed lines are asymptotic values of skew 
with Re as parameter. A, Re = 154; A, 218; 0,  283; ., 347; 0 , 4 1 1 ;  a, 475; 0 , 5 3 9 .  

of skew. The remainder of this section contains a more complete account of how axial 
skew develops in each of these two regimes. 

I n  loosely coiled pipes, A increases with B until ultimately attaining its asymptotic 
value A,. A comparison of the curves in figures 7 ( a )  and ( b )  reveals that the 
low-curvature regime becomes steadily more limited as L / a  (and 0 )  increases. Thus, 
while stronger curvature appears to hasten the development of skew, the ultimate 
amplitude of skew for a given Re is limited by the plateau value A, ,  independent of 
a / R .  This conclusion can be made more quantitative by correlating A to the Dean 
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number K = (a/R):Re, as in figure 8 ( a ,  b ) .  Data for loosely coiled pipes fall along an 
envelope of points that can be expressed empirically by 

as depicted by the solid curves in this figure. For each Re, horizontal-plateau curves 
of asymptotic skew diverge from the envelope a t  specific values of a / R .  This pattern 
is reminiscent of friction-factor curves (e.g. White 1929), except that in the latter case 
divergencies arise only at much higher values of Re. Like White’s friction-factor data, 
figure 8 (a,  b )  indicates that  the onset of skew occurs a t  a small but finite Dean number, 
11 < K~ < 16. This constitutes indirect evidence that a third flow regime may exist 
near zero Dean number, in which the axial-velocity profile remains axisymmetric 
throughout the pipe cross-section. 

I n  the asymptotic regime of tightly coiled pipes, axial skew is independent of bend 
curvature even when flow is not yet fully developed. A quantitative comparison of 
figures 7 ( a )  and ( b )  makes this evident, in that  for each Re 2 200 asymptotic skew 
A ,  is much more pronounced a t  L / a  = 56.5. This result is consistent with earlier 
observations given in figure 2;  a t  high Re, A ,  simply increases as [Re L/a$ in regions 
sufficiently far downstream to be decoupled from the inlet line vortex. However, a t  
low Re axial skew seems to  depart from a simple a-power relation. A better fit to  all 
our data can be obtained by postulating that the onset of skew in the asymptotic 
regime may require a critical Re, = 100+50. Unfortunately, the departure is 
significant only at low Re, for which the experimental uncertainty in our technique 
is too large to permit a direct resolution of this point. Qualitatively, however, the 
data for both entrance lengths exhibit such a trend. Using this model permits all the 
experimental data to be least-squares fitted to  the expression 

A , =  1.38 
a (4) 
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This relation is compared in figure 9 with data obtained for curved pipe segments 
1.91 and 3.81 cm i.d. with Lla 2 10 and 150 < Re < 2600.t 

A complete expression for axial skew valid over the stated limits to our data is 
given by (2), which combines the effects of each regime. Thus we have demonstrated 
experimentally that axial skew may develop by either of two qualitatively different 
modes : as a function only of the parameter [(Re - 100) L/a]  independent of curvature ; 
or else, in loosely coiled pipes, as a function of K and lla. The demarcation between 
the two regimes depends strongly on alR.  

4. Discussion 
An elementary analysis of the effect of stream curvature on flow stability (e.g. 

Landau & Lifshitz 1959) requires centrifugal force to be balanced by a radial pressure 
gradient aplar = p W 2 / R ,  where W is the local axial velocity. Rayleigh’s stability 
principle is then used to show that a stable flow configuration is achieved only if the 
axial-velocity profile is skewed towards the outside of the pipe bend. Thus, in the 
absence of other contributions the centreline-velocity gradient, a Wlar x ( w / a )  A 
could be expected to vary inversely with stream curvature. Experimentally we find 
A ,  to be independent of R for tightly coiled pipes, so that this simple theoretical model 
is not accurate. We believe that the actual patterns of skew are influenced by strong 
secondary currents induced throughout the cross-section of a curved pipe. These 
currents produce a convective effect which tends to redistribute axial momentum, 
and thus opposes the action of centrifugal acceleration. The currents and the 
centrifugal acceleration both depend on R but they must somehow balance, even in 
developing flow, to make A, independent of R. 

An analogous balance for developed Jlow was illustrated by Taylor (1929), who 
observed the characteristic helical motion of streamlines by injecting dye into the 
wall boundary layer of glass coils. Each dye streakline usually traced a semicircular 
helix whose cross-section was bounded by the centreline axis of symmetry. By 
measuring the helical pitch required to complete one circuit of the dye, he was able 
to estimate the strength of secondary circulation relative to the axial flow : 

] ds. 
local axial velocity 

local transverse velocity 
Helical pitch = 

He found pitch to be independent of primary axial velocity over a limited range of 
flow rates, and observed that for pipes of two different curvature ratios - 18.7 and 
31.9 - the circuit was completed ‘in about half a turn of the helix’, so that pitch was 
approximately [ R / ( ~ + R ) ]  Rla in each case. Thus in developed flow the magnitude 
of transverse swirl increases directly with axial velocity. 

Taylor’s observations cannot be applied directly to our results because pitch is 
limited largely by the small transverse centreline currents, and therefore can be 
expected to be insensitive to axial skew. Nonetheless his description of helical motion 
exemplifies the invariance which can result from a balance of opposing flow 
mechanisms. We interpret the asymptotic regime of developing axial skew in a similar 
fashion : no effect of stream curvature is apparent because both transverse currents 
and centrifugal effects must remain balanced by the same dependence on curvature. 

t From earlier results we surmise that axial-flow development is nearly inviscid for L/a  5 10. 
Moreover, those data depart considerably from the expression for A,. 
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By this view, axial skew is relatively underdeveloped in the loosely coiled regime. 
Thus we infer that in loosely coiled pipes the manifestation of centrifugal effects lags 
the growth of transverse secondary currents, and that the cumulative action of 
centrifugal acceleration can be promoted by increasing either the curvature ratio a / R  
or the entrance length Lla. 

The existence of two dissimilar modes of axial-flow development is consonant with 
the results of a numerical investigation by van Dyke (1978), who used a series 
expansion to evaluate curved-pipe fiiction-factor ratios AJA,. He found that AJA, 
increased as ~ 4 ,  contrary to a square-root dependence predicted by all boundary-layer 
theories. Van Dyke conjectured that these two analytic methods could be reconciled 
if the asymptotic behaviour of secondary flow depended on the separate effects of 
a / R  and Re, rather than on K uniquely. Our experimental results given in figure 8 (a,  b )  
show just such an effect: for a given Dean number K > 25 axial skew can take on 
a multiplicity of values, with a / R  or Re as an additional independent parameter. 

Van Dyke's findings have been considered to be controversial because they seem 
to conflict with experimental results and with other numerical analyses. However, 
his results are in agreement with measured friction-factor ratios in the limit of very 
loose coiling (a/R+O). In our view, other differences stem from the basic governing 
equations and not from van Dyke's method. 

To date most computational studies, including that of van Dyke, have used a set 
of governing equations in which terms involving a / R  are neglected except to lowest 
order. Hence this formulation is strictly valid only for loosely coiled pipes, but in 
practice the condition of loose coiling has been expected to hold for a / R  < 0.2. Our 
experimental results in figure 8 ( b )  indicate that this upper bound cannot generally 
be correct, since asymptotic skew begins to diverge from the Dean-number envelope 
of points at  values of a / R  that are at least as small as (K/Re)2 = (g)z N &. At higher 
a / R  axial skew can no longer be correlated uniquely with K .  Since the low-order 
approximation to the full Navier-Stokes equations predicts that all flow patterns 
should scale only with K ,  we can conclude that neglected terms of order (a/R)' or higher 
must become significant for a / R  > &. This argument may account for van Dyke's 
observation that experimental values of friction-factor ratios diverged from his series 
solutions for a / R > & .  Based on our experimental results, we believe that the 
governing equations he used are inaccurate for values of a / R  greater than this bound. 
Likewise, we attribute other small but observable differences between experiment 
(Olson & Snyder 1985) and computation (Dennis & Ng 1982) to the use of this same 
low-order approximation. 

Recently Soh & Berger (1984) have numerically solved the full Navier-Stokes 
equations for laminar entry flow in curved pipes with arbitrary curvature ratio. Their 
formulation should make it possible to obtain a more exact criterion for loose coiling, 
by generating baseline cases of secondary-flow patterns to evaluate the accuracy of 
the low-order approximation. 

The extensive range of curvatures used in the present study settles a scaling 
ambiguity that was left unresolved in an earlier report by Olson & Snyder (1985). 
In that study the range of a / R  was too limited to determine whether upstream axial 
skew should be scaled to L/a  or to L/(aR):. Our present data, for L/a  = 28.2 with 
a / R  = & and $, yield values of skew which are less than half those predicted by an 
empirical curve of d,(a/R)i  vs L/(aR)k When scaled to Lla,  these same values fall 
along the low-Re curve in figure 2. Likewise, the centreline-velocity profile in figure 6, 
measured at 90' of bend, corresponds to a far-downstream condition L / a  = 56.5. 
Although it is more sharply peaked than any of the profiles in figure 1,  it best matches 
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8 = 180", corresponding to L / a  = 25.1. Thus L / a  is most likely to be the upstream 
lengthscale for axial skew in tightly coiled pipes, a conclusion that is reinforced by 
the form of the downstream lengthscale, [(Re- 100) Lla],  for asymptotic skew A,. It 
would be premature, however, to extend this conclusion to include loosely coiled pipes, 
for which no data is yet available regarding the upstream region of flow development. 

The present data indicate that other aspects of entry flow in curved pipes merit 
systematic investigation. For example, the onset of skew at a finite Dean number 
K, suggests how the length ratio LJL, for fully developed flow could approach the 
physically reasonable limit 1 as a / R  tends to zero. An analogous effect may occur 
in the tightly coiled regime, for Re - Re,.? In comparing figures 7 ( a )  and (b) an 
additional question arises : as entrance length increases, does the steady encroachment 
of asymptotic skew culminate in the complete disappearance of the loosely coiled 
regime? Physically this would signify that in fully developed flow the action of 
centrifugal acceleration is matched by transverse swirl for all K 2 K,. We feel this is 
a point best resolved by numerical analysts, as fully developed flow is a difficult 
concept to define experimentally. 

5. Conclusions 
This report demonstrates that the downstream development of axial skew in steady 

laminar curved-pipe flow cannot be characterized by a single dimensionless parameter. 
In loosely coiled pipes the growth of axial skew depends strongly on pipe curvature, 
through the Dean number, but in more tightly coiled pipes the precise curvature is 
immaterial. Instead, the magnitude of asymptotic skew A ,  varies as [(Re- 100) L/a$, 
independent of a / R .  The existence of two such dissimilar modes serves to substantiate 
experimentally van Dyke's conjecture that the development of secondary flow in 
curved pipes involves a separate consideration of a / R  and Re, and not of Dean number 
uniquely. This result also shows that higher-order terms involving the curvature ratio 
begin to modify the distribution of flow for values of a / R  at least as small as &. 

B. Snyder wishes to thank the Whitaker Foundation for providing financial 
support during the preparation of this manuscript. 
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